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VARIANCE ESTIMATION IN NONPARAMETRIC REGRESSION

VIA THE DIFFERENCE SEQUENCE METHOD

By Lawrence D. Brown1 and M. Levine1,2
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Consider a Gaussian nonparametric regression problem having
both an unknown mean function and unknown variance function.
This article presents a class of difference-based kernel estimators for
the variance function. Optimal convergence rates that are uniform
over broad functional classes and bandwidths are fully characterized,
and asymptotic normality is also established. We also show that for
suitable asymptotic formulations our estimators achieve the minimax
rate.

1. Introduction. Let us consider the nonparametric regression problem

yi = g(xi) +
√

V (xi)ǫi, i = 1, . . . , n,(1)

where g(x) is an unknown mean function, the errors ǫi are i.i.d. with mean
zero, variance 1 and the finite fourth moment µ4 < ∞ while the design is
fixed. We assume that max{xi+1 − xi}= O(n−1) for ∀i = 0, . . . , n. Also, the
usual convention x0 = 0 and xn+1 = 1 applies. The problem we are inter-
ested in is estimating the variance V (x) when the mean g(x) is unknown.
In other words, the mean g(x) plays the role of a nuisance parameter. The
problem of variance estimation in nonparametric regression was first seri-
ously considered in the 1980s. The practical importance of this problem has
been also amply illustrated. It is needed to construct a confidence band for
any mean function estimate (see, e.g., Hart [24], Chapter 4). It is of interest
in confidence interval determination for turbulence modeling (Ruppert et al.
[34]), financial time series (Härdle and Tsybakov [23], Fan and Yao [18]), co-
variance structure estimation for nonstationary longitudinal data (see, e.g.,
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Diggle and Verbyla [10]), estimating correlation structure of heteroscedastic
spatial data (Opsomer et al. [31]), nonparametric regression with lognormal
errors as discussed in Brown et al. [2] and Shen and Brown [36], and many
other problems.

In what follows we describe in greater detail the history of a particular
approach to the problem. von Neumann [40, 41] and then Rice [33] consid-
ered the special, homoscedastic situation in which V (x) ≡ σ2 in the model
(1) but σ2 is unknown. They proposed relatively simple estimators of the
form

V̂ (x) =
1

2(n − 1)

n−1
∑

i=1

(yi+1 − yi)
2.(2)

The next logical step was made in Gasser, Sroka and Jennen-Steinmetz [19],
where three neighboring points were used to estimate the variance,

V̂ (x) =
2

3(n− 2)

n−2
∑

i=1

(

1

2
yi − yi+1 +

1

2
yi+2

)2

.(3)

A further general step was made in Hall, Kay and Titterington [21]. The
following definition is needed first.

Definition 1.1. Let us consider a sequence of numbers {di}r
i=0 such

that
r
∑

i=0

di = 0(4)

while
r
∑

i=0

d2
i = 1.(5)

Such a sequence is called a difference sequence of order r.

For example, when r = 1, we have d0 = 1√
2
, d1 = −d0, which defines the

first difference ∆Y = Yi−Yi−1√
2

. The estimator of Hall, Kay and Titterington

[21] can be defined as

V̂ (x) = (n− r)−1
n−r
∑

i=1

(

r
∑

j=0

djyj+i

)2

.(6)

The conditions (4) and (5) are meant to insure the unbiasedness of the
estimator (6) when g is constant and also the identifiability of the sequence
{di}.
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A different direction was taken in Hall and Carroll [20] and Hall and
Marron [22] where the variance was estimated by an average of squared
residuals from a fit to g; for other work on constant variance estimation,
see also Buckley, Eagleson and Silverman [5], Buckley and Eagleson [4] and
Carter and Eagleson [7].

The difference sequence idea introduced by Hall, Kay and Titterington
[21] can be modified for the case of a nonconstant variance function V (x). As
a rule, the average of squared differences of observations has to be localized
in one way or another—for example, by using the nearest neighbor average, a
spline approach or local polynomial regression. The first to try to generalize
it in this way were probably Müller and Stadtmüller [27]. It was further
developed in Hall, Kay and Titterington [21], Müller and Stadtmüller [28],
Seifert, Gasser and Wolf [35], Dette, Munk and Wagner [9], and many others.
An interesting application of this type of a variance function estimator for
the purpose of testing the functional form of the given regression model is
given in Dette [8].

Another possible route to estimating the variance function V (x) is to use
the local average of the squared residuals from the estimation of g(x). One of
the first applications of this principle was in Hall and Carroll [20]. A closely
related estimator was also considered earlier in Carroll [6] and Matloff, Rose
and Tai [26]. This approach has also been considered in Fan and Yao [18].

Some of the latest work in the area of variance estimation includes at-
tempts to derive methods that are suitable for the case where X ∈ Rd for
d > 1; see, for example, Spokoiny [38] for generalization of the residual-based
method and Munk, Bissantz, Wagner and Freitag [29] for generalization of
the difference-based method.

The present research describes a class of nonparametric variance esti-
mators based on difference sequences and local polynomial estimation, and
investigates their asymptotic behavior. Section 2 introduces the estimator
class and investigates its asymptotic rates of convergence as well as the
choice of the optimal bandwidth. Section 3 establishes the asymptotic nor-
mality of these estimators. Section 4 investigates the question of asymptotic
minimaxity for our estimator class among all possible variance estimators
for nonparametric regression.

2. Variance function estimators. Consider the model (1). We begin with
the following formal definition.

Definition 2.1. A pseudoresidual of order r is

∆i ≡ ∆r,i =
r
∑

j=0

djyj+i−⌊r/2⌊,(7)
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where {dj} is a difference sequence satisfying (4)–(5) and i = ⌊ r
2⌋+1, . . . , n+

⌊ r
2⌋ − r.

Let K(·) be a real-valued function such that K(u) ≥ 0 and is not identi-
cally zero; K(u) is bounded [∃M > 0 such that K(u) ≤ M for ∀u]; K(u) is
supported on [−1,1] and

∫

K(u)du = 1. We use the notation σ2
K =

∫

u2K(u)du
and RK =

∫

K2(u)du. Then, based on ∆r,i, we define a variance estimator

V̂h(x) of order r as the local polynomial regression estimator based on ∆2
r,i,

V̂h(x) = â0,(8)

where

(â0, â1, . . . , âp)

= argmin
a0,a1,...,ap

n+⌊r/2⌋−r
∑

i=⌊r/2⌋+1

[∆2
r,i − a0 − a1(x− xi)− · · · − ap(x− xi)

p]2

×K

(

x− xi

h

)

.

The value h in (8) is called the bandwidth and K is the weight function.
It should be clear that these estimators are unbiased under the assumption

of homoscedasticity V (x) ≡ σ2 and constant mean g(x) ≡ µ. We begin with
the definition of the functional class that will be used in the asymptotic
results to follow.

Definition 2.2. Define the functional class Cγ as follows. Let C1 > 0,
C2 > 0. Let us denote γ′ = γ − ⌊γ⌋ where ⌊γ⌋ denotes the greatest integer
less than γ. We say that the function f(x) belongs to the class Cγ if for all
x, y ∈ (0,1)

|f ⌊γ⌋(x)− f ⌊γ⌋(y)| ≤ C1|x− y|γ′

,(9)

|f (k)(x)| ≤ C2,(10)

for k = 0, . . . , ⌊γ⌋− 1. Note that Cγ depends on the choice of C1, C2, but for
our convenience we omit this dependence from the notation. There are also
similar types of dependence in the definitions that immediately follow.

Definition 2.3. Let δ > 0. We say the function is in class C+
γ if it is in

Cγ and in addition

f(x)≥ δ.(11)

These classes of functions are familiar in the literature, as in Fan [15, 16]
and are often referred to as Lipschitz balls.
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Definition 2.4. Define the pointwise risk of the variance estimator
V̂h(x) (its mean squared error at a point x) as

R(V (x), V̂h(x)) = E[V̂h(x)− V (x)]2.

Definition 2.5. Define the global mean squared risk of the variance
estimator V̂h(x) as

R(V, V̂h) = E

(
∫ 1

0
(V̂h(x)− V (x))2 dx

)

.(12)

Then the globally optimal in the minimax sense bandwidth hopt is defined
as

hn = argmin{sup{R(V, V̂h) :V ∈ Cγ , g ∈Cβ} :h > 0}.
Note that hn depends on n as well as C1, C2, β and γ. A similar definition
applies in the setting of Definition 2.4.

Remark 2.6. In the special case where γ = 2 and β = 1, the finite sam-
ple performance of this estimator has been investigated in Levine [25] to-
gether with the possible choice of bandwidth. A version of K-fold cross-
validation has been recommended as the most suitable method. When uti-
lized, it produces a variance estimator that in typical cases is not very sen-
sitive to the choice of the mean function g(x).

Theorem 2.7. Consider the nonparametric regression problem described
by (1), with estimator as described in (8). Fix C1, C2, γ > 0 and β >
γ/(4γ + 2) to define functional classes Cγ and Cβ according to the defini-

tion (2.2). Assume p > ⌊γ⌋. Then the optimal bandwidth is hn ≍ n−1/(2γ+1).
Let 0 < a≤ a <∞. Then there are constants B and B such that

Bn−2γ/(2γ+1) + o(n−2γ/(2γ+1))
(13)

≤ R(V, V̂ ) ≤Bn−2γ/(2γ+1) + o(n−2γ/(2γ+1))

for all h satisfying a≤ n1/(2γ+1)h≤ a, uniformly for g ∈ Cβ , V ∈ Cγ .

Theorem 2.7 refers to properties of the integrated mean square error.
Related results also hold for minimax risk at a point. The main results are
stated in the following theorem.

Theorem 2.8. Consider the setting of Theorem 2.7. Let x0 ∈ (0,1).
Assume p > ⌊γ⌋. Then the optimal bandwidth is hn(x) ≍ n−1/(2γ+1). Let
0 < a≤ a < ∞. Then there are constants B and B such that

Bn−2γ/(2γ+1) + o(n−2γ/(2γ+1))≤ R(V (x0), V̂hn
(x0))

(14)
≤ Bn−2γ/(2γ+1) + o(n−2γ/(2γ+1))
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for all h(x) satisfying a≤ n1/(2γ+1)h ≤ a, uniformly for g ∈ Cβ, V ∈ Cγ .

The proof of these theorems can be found in the Appendix. The minimax
rates obtained in (13) and (14) will be shown in Theorems 4.1 and 4.2 to be
optimal in the setting of Theorem 2.7. At this point, the following remarks
may be helpful.

Remark 2.9. If one assumes that β = γ/(4γ +2) in the definition of the
functional class Cβ , the conclusions of Theorems 2.7 and 2.8 remain valid,
but the constants B and B appearing in them become dependent on β.
If β < γ/(4γ + 2), the conclusion (14) does not hold. For more details, see
comments preceding Theorem 4.2 and the Appendix.

Remark 2.10. Müller and Stadtmüller [28] considered the general
quadratic form based estimator similar to our (8) and derived convergence
rates for its mean squared error. They also were the first to point out an
error in the paper by Hall and Carroll [20] (see Müller and Stadtmüller [28],
pages 214 and 221). They use a slightly different (more restrictive) definition
of the classes Cγ and Cβ and only establish rates of convergence and error
terms on those rates for fixed functions V and g within the classes Cγ and
Cβ . Our results resemble these but we also establish the rates of convergence
uniformly over the functional classes Cβ and Cγ and therefore our bounds
are of the minimax type.

Remark 2.11. It is important to notice that the asymptotic mean
squared risks in Theorems 2.7 and 2.8 can be further reduced by proper
choice of the difference sequence {dj}. The proof in the Appendix supple-
mented with material in Hall, Kay and Titterington [21] shows that the
asymptotic variance of our estimators will be affected by the choice of the
difference sequence, but the choice of this sequence does not affect the bias in
asymptotic calculations. The effect on the asymptotic variance is to multiply
it by a constant proportional to

C = 2

(

1 + 2
r
∑

k=1

(

r−1−k
∑

j=0

djdj+k

)2)

.(15)

For any given value of r there is a difference sequence that minimizes this
constant. A computational algorithm for these sequences is given in Hall,
Kay and Titterington [21]. The resulting minimal constant as a function of
r is Cmin = (2r + 1)/r.
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3. Asymptotic normality. As a next step, we establish that the estimator
(8) is asymptotically normal. We recall that the local polynomial regression

estimator V̂h(x) can be represented as

V̂h(x) =

n+⌊r/2⌋−r
∑

i=⌊r/2⌋+1

Kn;h,x(xi)∆
2
r,i,(16)

where Kn;h,x(xi) = Kn,x(
x−xi

h ). Here Kn,x(
x−xi

h ) can be thought of as a cen-
tered and rescaled nonnegative local kernel function whose shape depends
on the location of design points xi, the point of estimation x and the num-
ber of observations n. We know that Kn,x(x−xi

h ) satisfies discrete moment
conditions,

n+⌊r/2⌋−r
∑

i=⌊r/2⌋+1

Kn,x

(

x− xi

h

)

= 1,(17)

n+⌊r/2⌋−r
∑

i=⌊r/2⌋+1

(x− xi)
qKn,x

(

x− xi

h

)

= 0(18)

for any q = 1, . . . , p. We also need the fact that the support of Kn(·) is
contained in that of K(·); in other words, Kn(·) = 0 whenever |xi − x|> h.
For more details see, for example, Fan and Gijbels [17]. Now we can state
the following result.

Theorem 3.1. Consider the nonparametric regression problem described
by (1), with estimator as described in (8). We assume that the functions g(x)
and V (x) are continuous for any x ∈ [0,1] and V is bounded away from zero.
Assume µ4+ν = E(εi)

4+ν < ∞ for some ν > 0. Then, as h → 0, n→∞ and
nh→∞, we find that

√
nh(V̂h(x)− V (x)−O(h2γ))(19)

is asymptotically normal with mean zero and variance σ2 where 0 < σ2 <∞.

Proof. To prove this result, we rely on the CLT for partial sums of a
generalized linear process

Xn =
n
∑

i=1

aniξi,(20)

where ξi is a mixing sequence. This and several similar results were es-
tablished in Peligrad and Utev [32]. Thus, the estimator (8) can be easily
represented in the form (20) with Kn;h,x(xi) as ani. What remains is to verify
the conditions of Theorem 2.2(c) in Peligrad and Utev [32].
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• The first condition is

max
1≤i≤n

|ani| → 0(21)

as n→∞ and it is immediately satisfied since

Kn;h,x(xi) = O((nh)−1)(22)

uniformly for all x ∈ [0,1].
• The second condition is

sup
n

n
∑

i=1

a2
ni <∞.(23)

It can be verified by using the Cauchy–Schwarz inequality and (22).
• To establish uniform integrability of ξ2

i ≡ ∆4
r,i, we use a simple criterion

mentioned in Shiryaev [37] that requires existence of the nonnegative,
monotonically increasing function G(t), defined for t ≥ 0, such that

lim
t→∞

G(t)

t
= ∞

and

sup
i

E[G(∆4
r,i)] <∞.

It is enough to choose G(t) = tν for small ν > to have this condition
satisfied. Finally, the remaining three conditions of Peligrad and Utev
[32] are trivially satisfied. �

4. Asymptotic minimaxity and related issues. Lower bounds on the asymp-
totic minimax rate for estimating a nonparametric variance in formulations
related to that in (1) have occasionally been studied in earlier literature.
Two papers seem particularly relevant. Munk and Ruymgaart [30] study a
different, but related problem. Their paper contains a lower bound on the
asymptotic minimax risk for their setting. In particular, their setting in-
volves a problem with random design, rather than the fixed design case in
(1). Their proof uses the Van Trees inequality and relies heavily on the fact
that their (Xi, Yi) pairs are independent and identically distributed. While
it may well be possible to do so, it is not immediately evident how to modify
their argument to apply to the setting (1).

Hall and Carroll [20] consider a setting similar to ours. Their equation
(2.13) claims (in our notation) that there is a constant K > 0, possibly
depending on C1, C2, β such that for any estimator Ṽ

sup{R(V (x0), Ṽ (x0)) :V ∈ Cγ , g ∈ Cβ}
(24)

≥K max{n−2γ/(2γ+1), n−4β/(2β+1)}.
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Note that n−2γ/(2γ+1) = o(n−4β/(2β+1)) for β < γ/(2γ + 2). It thus follows
from (14) in our Theorem 2.8 that for any γ/(4γ + 2) < β < γ/(2γ + 2) and
n sufficiently large

sup{R(V (x0), V̂hn
(x0)) :V ∈ Cγ , g ∈ Cβ}

(25)
≪ K max{n−2γ/(2γ+1), n−4β/(2β+1)},

where hn is yet again the optimal bandwidth. This contradicts the assertion
in Hall and Carroll [20], and shows that their assertion (2.13) is in error—
as is the argument supporting it that follows (C.3) of their article. For a
similar commentary see also Müller and Stadtmüller [28]. Because of this
contradiction it is necessary to give an independent statement and proof of
a lower bound for the minimax risk. That is the goal of this section, where
we treat the case in which β ≥ γ/(4γ + 2). The minimax lower bound for
the case in which β < γ/(4γ + 2) requires different methods which are more
sophisticated. That case, as well as some further generalizations, have been
treated in Wang, Brown, Cai and Levine [42] as a sequel to the present
paper. That paper proves ratewise sharp lower and upper bounds for the
case where β < γ/(4γ + 2).

We have treated both mean squared error at a point (in Theorem 2.8)
and integrated mean squared error (in Theorem 2.7). Correspondingly, we
provide statements of lower bounds on the minimax rate for each of these
cases. The local version of the lower bound result for the minimax risk is
obtained under the assumption of normality of errors εi. See Section 2 for the
definition of R and other quantities that appear in the following statements.

Theorem 4.1. Consider the nonparametric regression problem described
by (1). Fix C1, C2, β and γ to define functional classes Cγ , Cβ according
to (2.2). Also assume that εi ∼ N(0,1) and independent. Then there is a
constant K > 0 such that

inf{sup{R(V, Ṽ ) :V ∈ C+
γ , g ∈ Cβ} : Ṽ } ≥Kn−2γ/(2γ+1)(26)

where the inf is taken over all possible estimators of the variance function V .

Our argument relies on the so-called “two-point” argument, introduced
and extensively analyzed in Donoho and Liu [11, 12].

Theorem 4.2. Consider the nonparametric regression problem described
by (1). Fix C1, C2, β and γ to define functional classes Cγ , Cβ according
to (2.2). Also assume that εi ∼ N(0,1) and independent. Then there is a
constant K > 0 such that

inf{sup{R(V (x0)), Ṽ (x0)) :V ∈ Cγ , g ∈ Cβ} : Ṽ } ≥ Kn−2γ/(2γ+1)(27)

where the inf is taken over all possible estimators of the variance function V .
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Proof. It is easier to begin with the proof of Theorem 4.2 and then
proceed to the proof of Theorem 4.1. We will use a two-point modulus-of-
continuity argument to establish the lower bound. Such an argument was
pioneered by Donoho and Liu [11, 12] for a different though related problem.
See also Hall and Carroll [20] and Fan [16].

We assume without loss of generality that g ≡ 0. Define the function

h(t) =







2− |t|γ , if 0≤ |t| ≤ 1,
(2− |t|)γ , if 1 < |t| ≤ 2,
0, if |t|> 2.

(28)

Assume (for convenience only) that C1 > 2. Let d be a constant satisfying
0 < d < C2 and let

fδ,l(x) = d + lδh

(

x− x0

δ1/γ

)

.(29)

Then fε,±1 ∈ Cγ for δ > 0 sufficiently small. Let H denote the Hellinger
distance between densities, that is, for any two probability densities m1, m2

dominated by a measure µ(dz),

H2(m1,m2) =

∫

(
√

m1(z)−
√

m2(z) )2µ(dz).(30)

Here are two basic facts about this metric that will be used below. If Z =
{Zj : j − 1, . . . , n} where the Zj are independent with densities {mkj : j =
1, . . . , n}, k = 1,2 and mk = Πjmkj denotes the product density, then

H2(m1,m2) ≤
∑

j

H2(m1j ,m2j);(31)

and if mi are univariate normal densities with mean 0 and variance σ2
i ,

i = 1,2, then

H2(m1,m2)≤ 2

(

σ2
1

σ2
2

− 1

)2

.(32)

For more details see Brown and Low [3] and Brown et al. [1].
It follows that if mk, k = 1,2, are the joint densities of the observations

{xi, Yi, i = 1, . . . , n} of (1) with g ≡ 0 and fk = fδ,(−1)k then

H2(m1,m2)≤
∑

i

2

(

fδ,−1(xi)

fδ,1(xi)
− 1

)2

(33)

≤ 8
∑

i

δ2h2
(

xi − x0

δ1/γ

)

= O(nγ(2γ+1)/γ).
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For this setting the Hellinger modulus-of-continuity, ω(·) (Donoho and Liu
[12], equation (1.1)), is defined as the inverse function corresponding to the
value H(m1,m2). Hence it satisfies

ω−1(γ) = O(n1/2γ(2γ+1)/2γ ).(34)

Equation (27) then follows, as established in Donoho and Liu [12]. Although
this completes the proof of Theorem 4.2, we also provide a sketch of the
argument based on (34). See Donoho and Liu [12] and references cited therein
for more details. �

Proof of Theorem 4.1. We omit this proof for the sake of brevity.
It begins from the result in Theorem 4.2 and then follows along the lines
first described in detail in Donoho, Liu and MacGibbon [13]. This theorem
can be also viewed as a consequence of the general results on the global
convergence of nonparametric estimators by Stone [39] and Efromovich [14]
that do not require normality of errors εi. �

APPENDIX

Proofs of Theorems 2.7 and 2.8. Fix r and functional classes Cγ

and Cβ . For the sake of brevity, we write ∆i ≡ ∆r,i. Our main tools in this

proof are the representation (16) of the variance estimator V̂h(x) and the
properties (17)–(18). We also use the property

n+⌊r/2⌋−r
∑

i=⌊r/2⌋−1

(Kn;h,x(xi))
2 = O

(

1

nh

)

.(35)

(35) follows from (22) and the Cauchy–Schwarz inequality. Here and later,
O is uniform for all V ∈ Cγ , g ∈ Cβ and {h} = {hn}. Now,

E(∆2
i ) = Var(∆i) + (E(∆i))

2,(36)

where

Var(∆i) =
∑

d2
j Var(yj+i−⌊r/2⌋) = V (xi) + O

((

1

n

)γ)

(37)

and

E(∆i) = O

((

1

n

)β)

(38)

since
∑

dj = 0,
∑

d2
j = 1 and xi+r−⌊r/2⌋ − xi−⌊r/2⌋ = O( 1

n). This provides an
asymptotic bound on the bias as

Bias V̂h(x) =

n+⌊r/2⌋−r
∑

i=⌊r/2⌋+1

(V (xi)− V (x))Kn;h,x(xi) + O(n−γ) + O(n−β)

(39)
= O(hγ) + O(n−γ) + O(n−β).
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The last step in (39) is a very minor variation of the technique employed in
Wang, Brown, Cai and Levine [42] (see pages 10–11).

Next, we need to use the fact that ∆i and ∆j are independent if |i− j| ≥
r + 1. Hence,

Var V̂h(x) = Var

(n+⌊r/2⌋−r
∑

i=⌊r/2⌋+1

Kn;h,x(xi)∆
2
i

)

=

n+⌊r/2⌋−r
∑

i=⌊r/2⌋+1

i+r
∑

j=i−r

Kn;h,x(xi)Kn;h,x(xj)Cov(∆2
i ,∆

2
j)

≤
n+⌊r/2⌋−r
∑

i=⌊r/2⌋+1

i+r
∑

j=i−r

4−1((Kn;h,x(xi))
2 + (Kn;h,x(xj))

2)

× (Var∆2
i + Var∆2

j)

It is easy to see that

∆2
i =

(

r
∑

j=0

djyj+i−⌊r/2⌋

)2

=

(

r
∑

j=0

dj

√

V (xj+i−⌊r/2⌋)εi+j−⌊r/2⌋ + O(n−β)

)2

,

and this means, in turn, that

Var∆2
i ≤ C2

2 Var

(

r
∑

j=0

djεi+j−⌊r/2⌋ + O(n−β)

)2

≤ C2
2 (r + 1)µ4 + O(n−2β) + O(n−4β) = O(1).

Hence,

Var V̂h(x) ≤ O(1)

n+⌊r/2⌋−r
∑

i=⌊r/2⌋+1

i+r
∑

j=i−r

((Kn;h,x(xi))
2 + (Kn;h,x(xj))

2)

(40)

= O

(

1

nh

)

.

Combining the bounds in (39) and (40) yields the assertion of the theorem
since 2β > γ/(2γ + 1). �
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with nonparametric variance function estimation. Biometrics 55 704–710.

[32] Peligrad, M. and Utev, S. (1997). Central limit theorem for linear processes. Ann.

Probab. 25 443–456. MR1428516
[33] Rice, J. (1984). Bandwidth choice for nonparametric kernel regression. Ann. Statist.

12 1215–1230. MR0760684
[34] Ruppert, D., Wand, M., Holst, U. and Hössjer, O. (1997). Local polynomial
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